首页> 外文OA文献 >The importance of implementation details and parameter settings in black-box optimization: a case study on Gaussian estimation-of-distribution algorithms and circles-in-a-square packing problems
【2h】

The importance of implementation details and parameter settings in black-box optimization: a case study on Gaussian estimation-of-distribution algorithms and circles-in-a-square packing problems

机译:黑匣子优化中实现细节和参数设置的重要性:以高斯分布估计算法和平方圆包装问题为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

textabstractWe consider a scalable problem that has strong ties with real-world problems, can be compactly formulated and efficiently evaluated, yet is not trivial to solve and has interesting characteristics that differ from most commonly used benchmark problems: packing n circles in a square (CiaS). Recently, a first study that used basic Gaussian EDAs indicated that typically suggested algorithmic parameter settings do not necessarily transfer well to the CiaS problem. In this article, we consider also AMaLGaM, an enhanced Gaussian EDA, as well as arguably the most powerful real-valued black-box optimization algorithm to date, CMA-ES, which can also be seen as a further enhanced Gaussian EDA. We study whether the well-known performance on typical benchmark problems extends to the CiaS problem. We find that although the enhancements over a basic Gaussian EDA result in superior performance, the further efficiency enhancements in CMA-ES are not highly impactful. Instead, the most impactful features are how constraint handling is performed, how large the population size is, whether a full covariance matrix is used and whether restart techniques are used. We further show that a previously published version of AMaLGaM that does not require the user to set the the population size parameter is capable of solving the problem and we derive the scalability of the required number of function evaluations to solve the problem up to 99.99 % of the known optimal value for up to 30 circles.
机译:textabstract我们认为可扩展问题与现实问题有很强的联系,可以紧凑地制定和有效评估,但解决起来并非易事,并且具有不同于最常用的基准问题的有趣特征:将n个圆排成正方形(CiaS )。最近,使用基本高斯EDA的第一项研究表明,通常建议的算法参数设置不一定能很好地转移到CiaS问题。在本文中,我们还考虑了增强型高斯EDA AMaLGaM,以及可以说是迄今为止功能最强大的实值黑盒优化算法CMA-ES,它也可以看作是进一步增强的高斯EDA。我们研究了典型基准问题上的著名性能是否扩展到了CiaS问题。我们发现,尽管对基本高斯EDA的增强导致了卓越的性能,但CMA-ES中进一步的效率增强却没有太大的影响。相反,最有影响力的功能是如何执行约束处理,总体大小有多大,是否使用完整的协方差矩阵以及是否使用重新启动技术。我们进一步证明,不需要用户设置总体大小参数的AMaLGaM先前发布的版本能够解决该问题,并且我们得出了所需功能评估数目的可伸缩性,可以解决99.99%的问题。已知的最佳值(最多30个圆圈)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号